References
For leading references on asymmetric desymmetrizations of substrates containing no
stereocenter, see:
<A NAME="RG14403ST-1A">1a</A>
Tamao K.
Tohma T.
Inui N.
Nakayama O.
Ito Y.
Tetrahedron Lett.
1990,
31:
7333
<A NAME="RG14403ST-1B">1b</A>
Shibasaki M.
Boden CDJ.
Kojima A.
Tetrahedron
1997,
53:
7371
<A NAME="RG14403ST-1C">1c</A>
Angelaud R.
Babot O.
Charvat T.
Landais Y.
J. Org. Chem.
1999,
64:
9613
<A NAME="RG14403ST-1D">1d</A>
Bahmanyar S.
Houk KN.
J. Am. Chem. Soc.
2001,
123:
11273
<A NAME="RG14403ST-1E">1e</A>
Evans PA.
Cui J.
Buffone GP.
Angew. Chem. Int. Ed.
2003,
42:
1734 ; Angew. Chem. 2003, 115, 1776
For leading references on asymmetric desymmetrizations of substrates, which are meso-configured, see:
<A NAME="RG14403ST-2A">2a</A>
Hodgson DM.
Gibbs AR.
Lee GP.
Tetrahedron
1996,
52:
14361
<A NAME="RG14403ST-2B">2b</A>
La DS.
Alexander JB.
Cefalo DR.
Graf DD.
Hoveyda AH.
Schrock RR.
J. Am. Chem. Soc.
1998,
120:
9720
<A NAME="RG14403ST-2C">2c</A>
Jacobsen EN.
Acc. Chem. Res.
2000,
33:
421
<A NAME="RG14403ST-2D">2d</A>
BouzBouz S.
Cossy J.
Org. Lett.
2001,
3:
3995
<A NAME="RG14403ST-2E">2e</A>
Katsuki T.
Curr. Org. Chem.
2001,
5:
663
<A NAME="RG14403ST-2F">2f</A>
Harada T.
Egusa T.
Igarashi Y.
Kinugasa M.
Oku A.
J. Org. Chem.
2002,
67:
7080
<A NAME="RG14403ST-2G">2g</A>
Vares L.
Rein T.
J. Org. Chem.
2002,
67:
7226
<A NAME="RG14403ST-3A">3a</A>
Schreiber SL.
Chem. Scr.
1987,
27:
563
<A NAME="RG14403ST-3B">3b</A>
Ward RS.
Chem. Soc. Rev.
1990,
19:
1
<A NAME="RG14403ST-3C">3c</A>
Poss CS.
Schreiber SL.
Acc. Chem. Res.
1994,
27:
9
<A NAME="RG14403ST-3D">3d</A>
Maier M. In Organic Synthesis Highlights II
Waldmann H.
VCH;
Weinheim New York:
1995.
p.203
<A NAME="RG14403ST-3E">3e</A>
Magnuson SR.
Tetrahedron
1995,
51:
2167
<A NAME="RG14403ST-3F">3f</A>
Willis MC.
J. Chem. Soc., Perkin Trans. 1
1999,
1765
<A NAME="RG14403ST-3G">3g</A>
Hoffmann RW.
Angew. Chem. Int. Ed.
2003,
42:
1096 ; Angew. Chem. 2003, 115, 1128
<A NAME="RG14403ST-4A">4a</A>
Katsuki T.
Sharpless KB.
J. Am. Chem. Soc.
1980,
102:
5976
<A NAME="RG14403ST-4B">4b</A>
Gao Y.
Hanson RM.
Klunder JM.
Ko SY.
Masamune H.
Sharpless KB.
J. Am. Chem. Soc.
1987,
109:
5765
<A NAME="RG14403ST-5A">5a</A>
Hatakeyama S.
Sakurai K.
Takano S.
J. Chem. Soc., Chem. Commun.
1985,
1759
<A NAME="RG14403ST-5B">5b</A>
Häfele B.
Schröter D.
Jäger V.
Angew. Chem. Int. Ed. Engl.
1986,
25:
87 ; Angew. Chem. 1986, 98, 89
<A NAME="RG14403ST-5C">5c</A>
Schreiber SL.
Schreiber TS.
Smith DB.
J. Am. Chem. Soc.
1987,
109:
1525
<A NAME="RG14403ST-5D">5d</A>
Smith DB.
Wang Z.
Schreiber SL.
Tetrahedron
1990,
46:
4793
<A NAME="RG14403ST-5E">5e</A>
Nakatsuka M.
Ragan JA.
Sammakia T.
Smith DB.
Uehling DE.
Schreiber SL.
J. Am. Chem. Soc.
1990,
112:
5583
<A NAME="RG14403ST-5F">5f</A>
Jäger V.
Hümmer W.
Stahl U.
Gracza T.
Synthesis
1991,
769
<A NAME="RG14403ST-6">6</A>
Hatakeyama S.
Sakurai K.
Numata H.
Ochi N.
Takano S.
J. Am. Chem. Soc.
1988,
110:
5201
<A NAME="RG14403ST-7A">7a</A>
Herunsalee A.
Isobe M.
Pikul S.
Goto T.
Synlett
1991,
199
<A NAME="RG14403ST-7B">7b</A>
Hatakeyama S.
Satoh K.
Takano S.
Tetrahedron Lett.
1993,
34:
7425
<A NAME="RG14403ST-7C">7c</A>
Esumi T.
Fukuyama H.
Oribe R.
Kawazoe K.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1997,
38:
4823
<A NAME="RG14403ST-7D">7d</A>
Nishioka T.
Iwabuchi Y.
Irie H.
Hatakeyama S.
Tetrahedron Lett.
1998,
39:
5597
<A NAME="RG14403ST-8A">8a</A>
Omura S.
Tanaka H. In
Macrolide Antibiotics: Chemistry, Biology and Practice
Omura S.
Academic Press;
New York:
1984.
p.351-404
<A NAME="RG14403ST-8B">8b</A>
Oishi T.
Nakata T.
Synthesis
1990,
635
<A NAME="RG14403ST-8C">8c</A>
Rychnovsky SD.
Chem. Rev.
1995,
95:
2021
<A NAME="RG14403ST-8D">8d</A>
Schneider C.
Angew. Chem. Int. Ed.
1998,
37:
1375 ; Angew. Chem. 1998, 110, 1445
<A NAME="RG14403ST-9">9</A>
Compound 16 has been previously prepared, see ref.
[7a]
<A NAME="RG14403ST-10">10</A>
Except for compound 24, all new compounds gave satisfactory 1H NMR and IR spectra as well as correct combustion analyses.
<A NAME="RG14403ST-11A">11a</A>
Rieke RD.
Uhm SJ.
Hudnall PM.
J. Chem. Soc., Chem. Commun.
1973,
269
<A NAME="RG14403ST-11B">11b</A>
Rieke RD.
Uhm SJ.
Synthesis
1975,
452
Procedure:
<A NAME="RG14403ST-12A">12a</A>
Avignon-Tropis M.
Pougny JR.
Tetrahedron Lett.
1989,
30:
4951
<A NAME="RG14403ST-12B">12b</A>
Chou W.-N.
Clark DL.
White JB.
Tetrahedron Lett.
1991,
32:
299
<A NAME="RG14403ST-13A">13a</A>
Johnson RA.
Sharpless KB. In Catalytic Asymmetric Synthesis
Ojima IE.
Wiley-VCH;
New York:
1993.
p.103-158
<A NAME="RG14403ST-13B">13b</A>
Katsuki T.
Martin VS.
Org. React.
1996,
48:
1
SAEs of cis-2-butene-1,4-diol mono-protected with a tert-butyldimethylsilyl roup:
<A NAME="RG14403ST-14A">14a</A>
Astles PC.
Thomas EJ.
J. Chem. Soc., Perkin Trans. 1
1997,
845; 85% ee
<A NAME="RG14403ST-14B">14b</A>
Shibuya H.
Kawashima K.
Narita N.
Ikeda M.
Kitagawa I.
Chem. Pharm. Bull.
1992,
40:
1154; 84-85% ee
SAEs of cis-2-butene-1,4-diol mono-protected with a PMB group:
<A NAME="RG14403ST-15A">15a</A>
Williams RM.
Rollins SB.
Judd TC.
Tetrahedron
2000,
56:
521; 88% ee
<A NAME="RG14403ST-15B">15b</A>
Yoshino T.
Nagata Y.
Itoh E.
Hashimoto M.
Katoh T.
Terashima S.
Tetrahedron
1997,
53:
10239; 85% ee
<A NAME="RG14403ST-16">16</A>
This was concluded from the integral ratio of the peaks attributed to 3-H [δmajor = 3.02 (dd; 19/ent-19), δminor = 3.08(dd)].
<A NAME="RG14403ST-17">17</A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RG14403ST-18">18</A>
In addition, we retrieved inseparable mixtures of mono- with bis-epoxides.
<A NAME="RG14403ST-19">19</A>
This was concluded from the integral ratio of the peaks attributed to 3-H [δmajor = 3.00 (dd; 20/ent-20), δminor = 3.06(dd)].
<A NAME="RG14403ST-20">20</A>
cis-(2R,3S,4S)-2,3-Epoxy-1,7-bis-[4-methoxybenzyl)oxy]-5-hepten-4-ol(20): [α]D
25 = -30.9 (c = 0.58 in CHCl3);
- 94.4% ee by HPLC.
1H NMR (500.0 MHz, CDCl3): δ = 2.80 (d, J
OH,4 = 2.3 Hz, OH), 3.00 (dd, J
3,4 = 7.5 Hz, J
3,2 = 4.3 Hz, 3-H), 3.25 (mc, probably incompletely resolved ddd: J
2,1-H(A) = J
2,1-H(B) =
ca. 5.7 Hz, J
2,3 = 4.3 Hz, 2-H), AB signal (δA = 3.63, δB = 3.79, J
AB = 11.1 Hz, in addition split by J
A,2 = 6.2 Hz, J
B,2 = 5.4 Hz, 1-H2), B part superimposed by 3.80 (s, 2 × OCH3), AB signal (δA = 4.05, δB = 4.11, J
AB = 12.9 Hz, in addition split by J
A,6 = 5.7 Hz, 4
J
A,5-H = 1.4 Hz, J
B,6 = 6.7 Hz, 4
J
B,5-H = 1.5 Hz, 7-H2), 4.25 (br dd, J
4,3 = J
4,5 = 7.5 Hz, 4-H), 4.42
(s, 1′′-H2)*, AB signal (δA = 4.46, δB = 4.54, J
AB = 11.4 Hz,
1′-H2), 5.70 (dddd, J
cis
= 11.3 Hz, J
5,4 = 7.6 Hz, 4
J
5,7-H(A) = 4
J
5,7-H(B) = 1.5 Hz, 5-H), 5.82 (br ddd, J
cis
= 11.4 Hz,
J
6,7-H(A) = J
6,7-H(B) = 6.0 Hz, 6-H), AA′BB′ signal centered at δ = 6.88 and δ = 7.26 (2 × C6H4).
13C NMR (125.8 MHz, CDCl3): δ = 54.73 (C-2), 55.26 (2 × OCH3), 58.12 (C-3), 65.80 (C-7), 66.34 (C-4), 68.00 (C-1), 72.02 (C-1′′), 73.20 (C-1′),
113.83, 113.96, 129.46, and 129.60 (2 × 2 × C
ortho
, 2 × 2 × C
meta
), 129.32, 130.03, 159.28, and 159.51 (2 × C
para
, 2 × C
ipso
), 130.29 (C-6), 131.71 (C-5).
IR(film): 3400, 3000, 2935, 2910, 2860, 2835, 1610, 1585, 1515, 1460, 1300, 1250,
1175, 1075, 1035, 850, 820 cm-1.
Anal. Calcd for C23H28O6 (400.5): C, 68.98; H, 7.05. Found C, 68.99; H, 7.20.
<A NAME="RG14403ST-21">21</A> Moreover, tert-butyldimethylsiloxy groups do not withstand prolonged exposure to Red-Al®:
Berkenbusch T.
PhD Dissertation
Universität Freiburg;
Germany:
2002.
<A NAME="RG14403ST-22">22</A>
cis-(2S,4R)-1,7-Bis-[(4-methoxybenzyl)oxy]-5-heptene-2,4-diol (ent-21): [α]D
25 = 14.8 (c = 0.78 in CHCl3).
1H NMR (500.0 MHz, CDCl3): δ = AB signal (δA = 1.55,
δB = 1.71, J
AB = 14.2 Hz, in addition split by J
A,4 = 4.4 Hz, J
A,2 = 2.7 Hz, J
B,2 = 9.9 Hz, J
B,4 = 8.8 Hz, 3-H2), 3.07 (br s, 2 × OH), AB signal (δA = 3.35, δB = 3.40, J
AB = 9.5 Hz, in addition split by J
A,2 = 7.1 Hz, J
B,2 = 4.1 Hz, 1-H2), 3.795 and 3.804 (2 × s, 2 × OCH3), 3.96 (mc, 2-H), AB signal (δA = 4.06, δB = 4.09, J
AB = 12.4 Hz, in addition split by J
A,6 = 6.1 Hz, 4
J
A,5-H = 1.3 Hz, J
B,6 = 6.4 Hz, J
B,5-H = 1.3 Hz, 7-H2), AB signal (δA = 4.43, δB = 4.46, J
AB = 11.2 Hz, 1′-H2), B part partly superimposed by 4.47 (s, 1′′-H2), 4.67 (ddd with incompletely resolved allylic couplings, J
4,5 = J
4,3-H(B) = 8.4 Hz, J
4,3-H(A) = 4.2 Hz, 4-H), 5.60 (dddd, J
cis
= 11.4 Hz, J
5,4 = 8.0 Hz, 4
J
5,7-H(A) = 4
J
5,7-H(B) = 1.3 Hz, 5-H), 5.68 (dddd, J
cis
= 11.2 Hz, J
6,7-H(A) = J
6,7-H(B) = 6.2 Hz, 4
J
6,4 = 0.9 Hz, 6-H), AA′BB′ signal centered at δ = 6.87 and δ = 7.25 (2 × C6H4).
13C NMR (125.7 MHz, CDCl3): δ = 39.74 (C-3), 55.26 (2 × OCH3), 65.54, 67.63, 70.20, 72.19, 73.06 and 74.00 (C-1, C-2, C-4, C-7, C-1′, C-1′′),
113.85, 127.69, 129.40, 129.50, 129.93, 129.97, 135.72, 159.32, and 159.33 (9 resonances
for 10 non-equivalent nuclei: C-5, C-6, 2 × C6H4).
IR(film): 3400, 3000, 2920, 2855, 1615, 1585, 1515, 1465, 1455, 1445, 1420, 1360,
1300, 1245, 1175, 1075, 1030, 820 cm-1.
Anal. Calcd for C23H30O6 (402.5): C, 68.64; H, 7.51. Found: C, 68.34; H, 7.24.
Regioselective reductions of α,β-epoxy alcohols resulting in 1,3-diols (Red-Al®-method) or 1,2-diols (DIBAL-method):
<A NAME="RG14403ST-23A">23a</A>
Finan JM.
Kishi Y.
Tetrahedron Lett.
1982,
23:
2719
<A NAME="RG14403ST-23B">23b</A>
Viti SM.
Tetrahedron Lett.
1982,
23:
4541
<A NAME="RG14403ST-24">24</A>
(2R,4R)-1-[(4-Methoxybenzyl)oxy]-6-heptene-2,4-diol (22): [α]D
25 = -1.9 (c = 0.81 in CHCl3).
1H NMR (500.0 MHz, CDCl3): δ = AB signal (δA = 1.53,
δB = 1.62, J
AB = 14.4 Hz, in addition split by J
A,2 = J
A,4 = 9.8 Hz, J
B,2 = J
B,4 = 2.7 Hz, 3-H2), 2.25 (dddd, J
5,6 = 7.3 Hz, J
5,4 = 6.2 Hz, 4
J
5,7-H(E) = 4
J
5,7-H(Z) = 1.1 Hz, 5-H2), 2.91-3.28 (m, 2 × OH), AB signal (δA = 3.35, δB = 3.43, J
AB = 9.4 Hz, in addition split by J
A,2 = 7.1 Hz, J
B,2 = 3.9 Hz, 1-H2), 3.81 (s, OCH3), 3.92 (dtd with transition to higher order splitting, J
4,3-H(A) = 9.8 Hz, J
4,5 = 6.1 Hz, J
4,3-H(B) = 2.5 Hz, 4-H), 4.04 (dddd, J
2,3-H(A) = 10.4 Hz, J
2,1-H(A) = 6.6 Hz, J
2,1-H(B) = 3.8 Hz, J
2,3-H(B) = 3.1 Hz, 2-H), 4.48 (s, 1′-H2), 5.09-5.14 (m, 7-H
E
, 7-H
Z
), 5.82 (mc, 6-H), AA′BB′ signal centered at δ = 6.88 and δ = 7.25 (C6H4).
13C NMR (125.7 MHz, CDCl3): δ = 38.71 and 42.21 (C-3, C-5), 55.26 (OCH3), 71.02, 71.16, 73.05, and 73.99 (C-1, C-2, C-4, C-1′), 113.86 and 129.41 (2 × C
ortho
, 2 × C
meta
), 117.86, 129.89, 134.51, and 159.35 (C-6, C-7, C
para
, C
ipso
).
IR(film): 3400, 3075, 2915, 2860, 1640, 1615, 1585, 1515, 1460, 1440, 1365, 1300,
1250, 1175, 1100, 1035, 990, 920, 820 cm-1.
Anal. Calcd for C15H22O4 (266.3): C, 67.64; H, 8.33. Found: C, 67.54; H, 8.39.
<A NAME="RG14403ST-25A">25a</A>
Rychnovsky SD.
Skalitzky DJ.
Tetrahedron Lett.
1990,
31:
945
<A NAME="RG14403ST-25B">25b</A>
Rychnovsky SD.
Rogers B.
Yang G.
J. Org. Chem.
1993,
58:
3511
<A NAME="RG14403ST-25C">25c</A>
Evans DA.
Rieger DL.
Gage JR.
Tetrahedron Lett.
1990,
31:
7099
<A NAME="RG14403ST-26">26</A> The asymmetric desymmetrization of a bicyclic, tertiary dialkenylcarbinol by
the zirconium analog of a SAE, employing 3.0-3.4 equivalents each of Zr(i-PrO)4, d-(-)-diisopropyl tartrate, and t-BuOOH is described in:
Spivey AC.
Woodhead SJ.
Weston M.
Andrews BI.
Angew. Chem. Int. Ed.
2001,
40:
769 ; Angew. Chem. 2001, 113, 791